Ramanujan sums via generalized Möbius functions and applications

نویسندگان

  • Vichian Laohakosol
  • Pattira Ruengsinsub
  • Nittiya Pabhapote
چکیده

A generalized Ramanujan sum (GRS) is defined by replacing the usual Möbius function in the classical Ramanujan sum with the Souriau-Hsu-Möbius function. After collecting basic properties of a GRS, mostly containing existing ones, seven aspects of a GRS are studied. The first shows that the unique representation of even functions with respect to GRSs is possible. The second is a derivation of the mean value of a GRS. The third establishes analogues of the remarkable Ramanujan’s formulae connecting divisor functions with Ramanujan sums. The fourth gives a formula for the inverse of a GRS. The fifth is an analysis showing when a reciprocity law exists. The sixth treats the problem of dependence. Finally, some characterizations of completely multiplicative function using GRSs are obtained and a connection of a GRS with the number of solutions of certain congruences is indicated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on Generalized Ramanujan Sums and Even Functions

We prove a simple formula for the main value of r-even functions and give applications of it. Considering the generalized Ramanujan sums cA(n, r) involving regular systems A of divisors we show that it is not possible to develop a Fourier theory with respect to cA(n, r), like in the the usual case of classical Ramanujan sums c(n, r).

متن کامل

Ju l 2 00 9 A generalization of Apostol ’ s Möbius functions of order k Antal

Apostol's Möbius functions µ k (n) of order k are generalized to depend on a second integer parameter m ≥ k. Asymptotic formulas are obtained for the partial sums of these generalized functions.

متن کامل

Some results of 2-periodic functions by Fourier sums in the space Lp(2)

In this paper, using the Steklov function, we introduce the generalized continuity modulus and denethe class of functions Wr;kp;' in the space Lp. For this class, we prove an analog of the estimates in [1]in the space Lp.

متن کامل

Ramanujan sums for signal processing of low-frequency noise.

An aperiodic (low-frequency) spectrum may originate from the error term in the mean value of an arithmetical function such as Möbius function or Mangoldt function, which are coding sequences for prime numbers. In the discrete Fourier transform the analyzing wave is periodic and not well suited to represent the low-frequency regime. In place we introduce a different signal processing tool based ...

متن کامل

Twisted Second Moments and Explicit Formulae of the Riemann Zeta-Function

Mathematisch-naturwissenschaftlichen Fakultät Doctor of Philosophy Twisted Second Moments and Explicit Formulae of the Riemann Zeta-Function by Nicolas Martinez Robles Verschiedene Aspekte, die analytische Zahlentheorie und die Riemann zeta-Funktion verbinden, werden erweitert. Dies beinhaltet: 1. explizite Formeln, die eine Verbindung zwischen der Möbiusfunktion und den nichttrivialen Nullstel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006